
tRackIT OS: Open-source Software for
Reliable VHF Wildlife Tracking

Jonas Höchst
Jannis Gottwald
Patrick Lampe
Julian Zobel
Thomas Nauss
Ralf Steinmetz
Bernd Freisleben September 27rd 2021

GI INFORMATIK 2021
CS4BioDiversity

tRackIT OS: Introduction
State of the art & development goals

● a novel approach for automated signal detection of VHF radio tracking tags,

● means to provide reliable operation of tRackIT stations under harsh conditions,

● efficient live data transmission for monitoring data and detected signals,

● a novel web-based user interface for intuitive configuration of tRackIT stations,

● a comparative evaluation of tRackIT OS compared to the state-of-the-art.

tRackIT OS: Requirements
Substituting manual radiotelemetry

1. Low entry barrier

○ hardware & software availability,

○ convenient data processing and analysis access, easy to use, and inexpensive.

2. Reliability

○ reliable signal detection, minimized amount of interference,

○ automatic failure detection and handling.

3. Data availability

○ short delays between data recording and transmission,

○ allow live system data monitoring.

tRackIT OS: Hardware
Commodity-off-the-shelf hardware

Component Price

RPi 3 Model B 35€

4x Nooelec SDR 4 * 35€

active USB Hub 10€

Power Supply 10€

Huawei LTE* 50€

LoRa HAT* 35€

LoRa Concentrator* 110€

200€+

Fig. 1: The hardware components of a tRackIT station.

tRackIT OS: Software Components
GNU/Linux meets IoT components

Fig. 2: Overview of the main software components of a tRackIT OS distribution.

tRackIT OS: pyradiotracking
Read antennas and find matching signals

Fig. 3: Signal analysis stages implemented in pyradiotracking.

1

2

3

4

5

tRackIT OS: Signal Detection (1)
Receiver architecture of software-defined radios

Source: https://pysdr.org/content/sampling.html#receiver-architectures

A sine wave of a fixed frequency with variable

phase and amplitude can be synthesized by

adding a cos() and sin() wave scaled by the two

components I (in-phase) and Q (out-of phase).

Commodity SDRs, just like FM Radios, shift the

signal down to baseband, by adding a center

frequency to a signal (shifted by 90° for Q

component).

center_freq
sample_rate

gain

tRackIT OS: Signal Detection (2)
IQ-samples visualized

The visualization of the raw IQ samples already

shows a sample with I and Q components with

high values, which appear as a rectangle.

In the experimen,t the sender was placed right

next to the receiver, thus the signals where

clipping in the chosen gain setting.

Fig. 4: IQ samples of one second, as received by RTL-SDR.

gain
sdr_callback_length

tRackIT OS: Signal Detection (3)
Short-time Fourier Transform (STFT)

The discrete Fourier transform (DFT) converts a

sequence of samples of a function into a

same-length sequence of equally-spaced samples

of the frequency.

A Short-time Fourier Transform (STFT) divides a

longer time signal into shorter segments of equal

length and computes the Fourier transform

separately on each shorter segment.

For signal detection, the power spectral density is

computed, i.e., relative power of a frequency at a

time.
Fig. 5: Power spectral density (PSD) of samples
computed via Short-time Fourier Transform (STFT).

fft_nperseg
fft_window

tRackIT OS: Signal Detection (4)
Signal power sampling and signal detection

All frequencies are scanned in a sampling interval

equal to the configured minimum signal duration.

If the sample exceeds the power and SNR

thresholds, values to the before and after are

scanned until thresholds are undershot.

All detected signals are checked for shadow

signals (equal start and stop time but lower

power) and filtered accordingly.

The detected signal and multiples of its

descriptive features are published.
Fig. 6: Power spectral densities (PSDs) of selected
frequencies, minimal signal power threshold, and signal
power sampling points.

signal_threshold_dbw
snr_threshold_db

signal_min_duration_ms

tRackIT OS: Signal Matching (5)
Read antennas and find matching signals

For each detected signal:

● For each matching group:

○ If matching.start > now + matching_timeout:

■ publish and remove matching group

○ If signal.frequency == matching.frequency +/- bandwidth

and signal.start == matching.start +/- time_diff

and signal.duration == matching +/- duration_diff:

■ add to matching group

○ Else:

■ create new matching group

Note: A matching group only holds one signal per SDR, signals of higher power are preferred.

matching_timeout_s
matching_time_diff_s

matching_bandwidth_hz
matching_duration_diff

tRackIT OS: Robustness in pyradiotracking
SDR signal analyzer self-monitoring

● Every data stream of an SDR is analyzed in a separate process.

● Processes monitor themselves such that an internal timestamp is computed based on

the samples received from the SDR and compared to the system clock.

● If the samples are lacking behind more than the configured sdr_timeout_s, some

samples have been skipped and the time of a detected signal is not accurate anymore.

The error is reported as and the analyzer is terminated.

● In addition to this, every analyzer process (re-)sets a timer when receiving samples,

which triggers, if no block is received within the configured sdr_timeout_s:

sdr_timeout_s

SDR 0 total clock drift (2.612 s) is larger than two blocks, signal

detection is degraded. Terminating...

SDR 0 received SIGALRM, last data received 2.114 ago.

tRackIT OS: Robustness in pyradiotr.
Central monitoring loop

● Check the timestamp of the last received sample block.

● If the timestamp of the last block is beyond the configured sdr_timeout_s, the analyzer

is terminated:

● When an analyzer is terminated, the central monitoring loop restarts the analyzer up to

sdr_max_restart times.

● All other analyzers are allowed to continue operation normally.

● If the restart count is reached, pyradiotracking will terminate itself.

sdr_timeout_s
sdr_max_restart

SDR 0 received last data 2021-06-21 20:27:55.215609; timed out.

tRackIT OS: Systemd Service Supervision
Restart of pyradiotracking

● Systemd keeps track of the radiotracking service.

● Should pyradiotracking terminate itself or crash in some way, it restarts the service after

a 10 seconds pause.

● If more than five restarts occur over the duration of 10 minutes, the system will reboot

itself.

● Rebooting the system also restarts the USB stack which can sometime help to mitigate

errors in signal retrieval.

Note: When debugging errors or copying data from failed stations, the automatic rebooting
can sometimes be annoying. You can always disable the radiotracking service using sudo
systemctl stop radiotracking.

tRackIT OS: Software Components
GNU/Linux meets IoT components

Fig. 2: Overview of the main software components of a tRackIT OS distribution.

tRackIT OS: Software Components
Glossary

● pyradiotracking: Signal detection software including dashboard

● pymqttutil: System monitoring

● systemd: Service control and supervision

● sysdweb: Web interface for sytemd

● wireguard: VPN / remote access

● ssh: Secure shell for WiFi / wireguard login

● MQTT: IoT communications protocol used for signal and monitoring data transmission

● LoRa: Long Range protocol used for signal transmission in areas without cellular coverage

● InfluxDB: Streaming database consuming detected signals and monitoring data

● Grafana: Data visualization at a central server

tRackIT OS: Monitoring
Aspects of a tRackIT stations health state

Sysdweb Color Indicator:

● Does not represent the internal state of, e.g., pyradiotracking.

● It shows wether the radiotracking service is running or has failed.

● If the respective service is marked green, it can still be possible that pyradiotracking is

starting a single failed logger over and over again.

tRackIT OS: Monitoring
Aspects of a tRackIT station’s health state

Uptime:

● The uptime is a useful indicator to assess the general health state of a station.

● If the uptime is low, and the station is restarting over and over again, it can be a simple

indicator for a configuration of high demand or failing hardware.

tRackIT OS: Monitoring
Aspects of a tRackIT station’s health state

Detected Signals:

● Observation of the detected signals is the most direct evidence of a functioning station.

● However, it is not always reliable, since there may not be a VHF tag around all the time to be

detected by the station.

● Watch the signals detected on all SDRs.

tRackIT OS: Experimental Evaluation
Experimental setup

Fig. 7: GPS trace of the experimental evaluation track and the corresponding tRackIT
stations.

Marburg Open Forest installation,

using 5 tRackIT stations.

a) tRackIT OS 0.7.0

b) paur 4.2

● VHF sender + GPS receiver

● 0:51 h experiment runtime

● 3,193 sent signals

tRackIT OS: Experimental Evaluation
Signal delay in paur 4.2

Fig. 8: Example of signal delay among different receivers observed in the 2020 field
season using paur.

Signal delay of up to 8 seconds on

different antennas of the same

tRackIT station.

Signal delays lead to problems in

signal matching, hence false

bearing calculations.

tRackIT OS: Experimental Evaluation
Comparing tRackIT OS and paur signal reception.

Fig. 10: Signal power and distance to a receiving station.

a) tRackIT OS b) paur
4,438 sigs (+103.3 %) | +62.7% (with -78 dBW threshold) 2,828 signals

tRackIT OS: Experimental Evaluation
Comparing tRackIT OS and paur signal reception.

Fig. 11: Histogram of bearing errors.

a) tRackIT OS b) paur
mean: 23.7° | standard dev 30.7° mean: 38.9° | standard dev 42.6°

Conclusion
Results and future work

tRackIT OS

a) enables reliable VHF signal detection for bearing calculation,

b) increases the number of usable signals by 103.3%,

c) improves the mean bearing calculation error from 38.9° to 23.7°, and

d) introduces only a slight overhead in power consumption of 2.55% or 0.2 W.

Challenges:

● Exact bearing calculation is challenging, since signals are affected by multiple factors:

vegetation, topology, humidity and rainfall. Ideas:

○ Incorporate context information; aggregate data from multiple stations.

● Automated continuous preparation and processing of collected data: building a user-friendly

widely applicable animal tracking system.

tRackIT OS: Open-source Software for
Reliable VHF Wildlife Tracking

Jonas Höchst
Jannis Gottwald
Patrick Lampe
Julian Zobel
Thomas Nauss
Ralf Steinmetz
Bernd Freisleben

EOF
hoechst@informatik.uni-marburg.de

Software Development & Download: https://github.com/Nature40/tRackIT-OS

mailto:hoechst@mathematik.uni-marburg.de
https://github.com/Nature40/tRackIT-OS

